isomorphic objects - определение. Что такое isomorphic objects
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое isomorphic objects - определение

Computably isomorphic

Nano-Structures & Nano-Objects         
JOURNAL
Nano-structures & Nano-objects; Nano-Struct Nano-Objects; Nano-Struct. Nano-Objects; Nano-Structures and Nano-Objects; Nano-structures and Nano-objects
Nano-Structures & Nano-Objects is an interdisciplinary peer-reviewed scientific journal devoted to all aspects of the synthesis and properties of the nanotechnology. The journal focuses on novel architecture at the nanolevel with an emphasis on new synthesis and characterization methods.
Initial and terminal objects         
OBJECTS USED IN CATEGORY THEORY BRANCH OF MATHEMATICS
Terminal object; Zero object; Coterminal object; Coterminal; Terminal element; Final object; Zero objects; Universal object; Coterminal angle; Zero-object; Terminal elements; Initial objects; Terminal objects; Coterminal objects; Final objects; Initial object; Initial and terminal object; Initial & terminal objects; Pointed category; Terminal and initial objects
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism .
Object (philosophy)         
ANYTHING THAT MAY BE ACTED UPON BY A SUBJECT
Objecthood; ProblemOfSubstance; Philosophic objects; Objects (philosophy)
An object is a philosophical term often used in contrast to the term subject. A subject is an observer and an object is a thing observed.

Википедия

Computable isomorphism

In computability theory two sets A ; B N {\displaystyle A;B\subseteq \mathbb {N} } of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function f : N N {\displaystyle f\colon \mathbb {N} \to \mathbb {N} } with f ( A ) = B {\displaystyle f(A)=B} . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.

Two numberings ν {\displaystyle \nu } and μ {\displaystyle \mu } are called computably isomorphic if there exists a computable bijection f {\displaystyle f} so that ν = μ f {\displaystyle \nu =\mu \circ f}

Computably isomorphic numberings induce the same notion of computability on a set.